Birational invariants of algebraic varieties
نویسنده
چکیده
We extend the notion of Iitaka dimension of a line bundle, and deene a family of dimensions indexed by weights, for vector bundles of arbitrary ranks on complex varieties. In the case of the cotangent bundle, we get a family of birational invariants, including the Kodaira dimension and the cotangent genus introduced by Sakai. We treat in detail several classes of examples, such as complete intersections, low codi-mensional subvarieties of projective spaces or tori, and projective bundles. We nally examine to what extent our invariants allow to reene the Kodaira-Enriques birational classiication of surfaces.
منابع مشابه
Motivic Integration on Smooth Rigid Varieties and Invariants of Degenerations
We develop a theory of motivic integration for smooth rigid varieties. As an application we obtain a motivic analogue for rigid varieties of Serre’s invariant for p-adic varieties. Our construction provides new geometric birational invariants of degenerations of algebraic varieties. For degenerations of Calabi-Yau varieties, our results take a stronger form.
متن کاملUniversal Spaces for Unramified Galois Cohomology
We construct and study universal spaces for birational invariants of algebraic varieties over algebraic closures of finite fields.
متن کاملBirational Geometry Old and New
A classical problem in algebraic geometry is to describe quantities that are invariants under birational equivalence as well as to determine some convenient birational model for each given variety, a minimal model. One such quantity is the ring of objects which transform like a tensor power of a differential of top degree, known as the canonical ring. The histories of the existence of minimal m...
متن کاملBirational Automorphisms of Higher-dimensional Algebraic Varieties
The present survey covers the known results on the groups of birational automorphisms, rationality problem and birational classii-cation for Fano brations. 0. Birational geometry starts with M.NN other's paper 45] on Cremona transformations. The problems of birational geometry of algebraic varieties, that is, birational classiication, the rationality and unirationality problems, structure of th...
متن کاملAn Analogue of the Novikov Conjecture in Complex Algebraic Geometry
We introduce an analogue of the Novikov Conjecture on higher signatures in the context of the algebraic geometry of (nonsingular) complex projective varieties. This conjecture asserts that certain “higher Todd genera” are birational invariants. This implies birational invariance of certain extra combinations of Chern classes (beyond just the classical Todd genus) in the case of varieties with l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1995